A theory about induced electric current and heating in plasma
نویسندگان
چکیده
The traditional generalized Ohm’s law in MHD (Magnetohydrodynamics) does not explicitly present the relation of electric currents and electric fields in fully ionized plasma, and leads to some unexpected concepts, such as “the magnetic frozen-in plasma”, magnetic reconnection etc. In the single fluid model, the action between electric current and magnetic field is not considered. In the two-fluid model, the derivation is based on the two dynamic equations of ions and electrons. The electric current in traditional generalized Ohm’s law depends on the velocities of the plasma, which should be decided by the two dynamic equations. However, the plasma velocity, eventually not free, is inappropriately considered as free parameter in the traditional generalized Ohm’s law. In the present paper, we solve the balance equation that can give exact solution of the velocities of electrons and ions, and then derive the electric current in fully ionized plasma. In the case ignoring boundary condition, there is no electric current in the plane perpendicular to the magnetic field when external forces are ignored. The electric field in the plane perpendicular to magnetic field do not contribute to the electric currents, so do the induced electric field from the motion of the plasma across magnetic field. The lack of induced electric current will keep magnetic field in space unaffected. The velocity of the bulk velocity of the plasma perpendicular to magnetic field is not free, it is decided by electromagnetic field and the external forces. We conclude that the bulk velocity of the fully ionized plasma is not coupled with the magnetic field. The motion of the plasma do not change the magnetic field in space, but the plasma will be confined by magnetic field. Due to the confinement of magnetic field, the plasma kinetic energy will be transformed into plasma thermal energy by the Lamor motion and collisions between the same species of particles inside plasma. Because the electric field perpendicular to magnetic field do not contribute electric current, the variation of magnetic field will transfer energy directly into the plasma thermal energy by induced electric field. The heating of plasma could be from the kinetic energy and the variation of magnetic field.
منابع مشابه
Experimental investigation of the neutral sheet profile during magnetic reconnection
During magnetic reconnection, a “neutral sheet” current is induced, heating the plasma. The resultant plasma thermal pressure forms a stationary equilibrium with the opposing magnetic fields. The reconnection layer profile holds significant clues about the physical mechanisms which control reconnection. On the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)], a ...
متن کاملCentral Impurity Toroidal Rotation in ICRF Heated Alcator C-Mod Plasmas
Central impurity toroidal rotation has been observed in Alcator C-Mod ICRF heated plasmas, from the Doppler shifts of argon x-ray lines. Rotation velocities up to 1.3 10 m/s in the co-current direction have been observed in H-mode discharges that had no direct momentum input. There is a strong correlation between the increase in the central impurity rotation velocity and the increase in the pla...
متن کاملAnalysis of liquids and chemicals costs in a sample port
In recent years, the application of Activity-Based Costing in Port industry has been deeply researched in theory and practice, but researchers only concentrate on the bulk and general cargo’s ABC in loading and unloading operations and there is little about the liquids and chemicals’. Based on the liquids and chemicals’ handling process and the particularity of their cost accounting, the paper ...
متن کاملTemporal dynamics of Joule heating and DC-electric field acceleration in single flare loop
Pulsating and explosive time profiles of mm-wave solar bursts observed at Metsähovi are examined in terms of the energy release in a single current-carrying loop. We suppose that the electric current in the loop is driven by photospheric convective flows. The flare occurs due to flute instability provoking the penetration of partially ionized plasma from the chromosphere or prominence into the ...
متن کاملGrain growth kinetic of spark plasma sintered magnesia
In this research, the densification of magnesia nanopowder with a mean particle size of about 100 nm was investigated by spark plasma sintering undera pressures of 80 MPa and at temperature range from 1000 °C to 1400 °C and a heating rate of 50 °C/min for 20 minutes. The density of the samples slowly increased with increasing sintering temperatures to 1200 °C. Afterwards, with more increasing o...
متن کامل